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1. Introduction 

The trajectory of VLSI technology, characterized by relentless miniaturization and the escalating 

complexity of Systems-on-Chip, continually introduces new paradigms and challenges for physical design 

automation. A significant trend in modern SoC design is the heterogeneous integration of diverse 

functionalities, including non-volatile memory technologies like Spin-Transfer-Torque Magnetic Random 

Access Memory (STT-MRAM) and analog/RF components such as on-chip inductors and transformers. 

While these elements offer substantial benefits in terms of performance, power efficiency, and form factor, 

their incorporation introduces physical phenomena previously of secondary concern in purely digital 

designs. Specifically, magnetically active components can generate appreciable stray magnetic fields. These 

fields, if not managed, present a critical reliability risk, capable of inducing unintended bit-flips in adjacent 

memory arrays or causing significant detuning and performance degradation in sensitive analog and RF 

front-end circuitry. 

Conventional physical design methodologies have historically prioritized geometric constraints, such as 

area minimization and overlap avoidance, with multi-physics considerations like magnetic interference 

often addressed only in late-stage verification. This reactive approach frequently necessitates the 

application of overly conservative guard-banding margins around sensitive or emitting components, leading 

to suboptimal area utilization, or, in more severe cases, requiring costly and time-consuming design 

iterations if violations are discovered post-layout. The inherent inefficiency and potential for compromised 

performance underscore the need for a paradigm shift towards proactive management of such cross-domain 

interactions. 

This project endeavors to address these emergent challenges by developing a comprehensive physical 

design automation framework that intrinsically incorporates magnetic-field awareness from the nascent 

stages of floorplanning through to detailed routing. The central tenet of this work is the elevation of 

magnetic integrity to a primary design objective, on par with traditional geometric and connectivity 

requirements. By treating magnetic keep-out zones as fundamental, first-class constraints, the system aims 

to ensure chip reliability and performance "by design," rather than through subsequent, often palliative, 

interventions. The developed tool leverages a simulated annealing optimization engine for placement, 

integrates custom obstacle-aware routing algorithms cognizant of these magnetic exclusion zones, and, 

introduces a three-dimensional visualization technique to map E-field intensity, proxied by local wire 

density, across the chip. This E-field map, augmented with representations of MTJ component locations, 

provides designers with novel insights into potential signal integrity concerns, regions of high routing 

congestion, or electromagnetic interference (EMI) hotspots. This report provides a detailed account of the 

project's current status, elucidates the architecture of the developed system, discusses its innovative 

contributions in the context of the course objectives and contemporary research directions in VLSI CAD, 

and outlines potential avenues for future research and enhancement. 

All algorithms and code discussed in this document are available in a GitHub repository, the link to which 

is provided in Section 9. 
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2. Detailed Project Description and Current System Architecture 

The project has matured into a tangible software prototype with a rich set of functionalities. This system 

provides an end-to-end, albeit simplified, workflow from block definition and MTJ parameterization to 

optimized floorplanning, constrained routing, and post-routing analysis. The software is implemented 

entirely in Python, utilizing the Tkinter library for its graphical user interface (GUI), Matplotlib for 2D and 

3D data visualization, and NumPy for numerical operations for geometric and physics-based calculations. 

The architecture is modular, comprising several distinct but interconnected components: 

2.1. Graphical User Interface (GUI) and System Control (main.py) 

The GUI serves as the primary interaction point for the designer, offering a visual representation of the chip 

layout and controls for various design operations. A central Matplotlib canvas dynamically renders the 

floorplan, displaying standard logic blocks as shaded rectangles and designated Magnetic Tunnel Junction 

(MTJ) blocks as distinct circles. A key visual feature is the depiction of "danger zones" around MTJ blocks 

(after the user inputs material thickness and saturation magnetization characteristics), semi-transparent red 

circular regions indicating the calculated magnetic field keep-out radii that other components must respect. 

User interaction capabilities are extensive. Designers can instantiate new blocks, specifying their 

dimensions, or remove existing ones. Blocks can be resized dynamically, and their positions can be 

manually adjusted via a drag-and-drop interface, facilitating coarse initial placements or fine-tuning of 

automated results. For connectivity, users can define and attach an arbitrary number of color-coded pins to 

the edges of each block, specifying their side (top, bottom, left, right) and fractional offset along that edge. 

A dedicated dialog allows for the detailed parameterization of MTJ blocks. Users can input the layer stack 

information, specifically, the thickness and saturation magnetization (Ms) for the free, barrier, reference, 

fixed, and antiferromagnetic layers, which are critical inputs for the subsequent magnetic field calculations. 

The GUI also provides controls to select initial placement strategies (e.g., "rectangular" grid or "wheel" 

arrangement), choose routing styles (Manhattan, Steiner, or Euclidean), and to initiate the automated 

floorplanning (simulated annealing) and routing processes. Finally, a distinct control enables the generation 

of the 3D E-field visualization map after routing is completed. 

2.2. MTJ Device Modeling and Field Zone Calculation (mtj_calc.py)[2, 3] 

This module encapsulates the physics-based modeling of MTJ devices. The MTJDevice class is central to 

this, representing an MTJ stack and its constituent layers. Its primary function is to calculate 

the field_zone_radius for each MTJ component. This calculation is based on a magnetic dipole field model, 

where the magnetic moment of the MTJ is first determined from the sum of the products of saturation 

magnetization, volume (area × thickness) for each ferromagnetic layer. For a single ferromagnetic layer, 

the formula is used such that: 

𝑚𝑖 = 𝑀𝑠,𝑖 ⋅ 𝑉𝑖 = 𝑀𝑠,𝑖 ⋅ 𝐴 ⋅ 𝑡𝑖 

where: 

• mi is the magnetic moment of layer i. 

• Ms,i is the saturation magnetization of layer i. 

• Vi is the volume of layer i. 
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• A is the cross-sectional area of the MTJ. 

• ti is the thickness of layer i. 

Then the total magnetic moment for the MTJ stack, considering only ferromagnetic layers, is: 

𝑀𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑚𝑖

𝑖∈ferro

= 𝐴 ∑ (𝑀𝑠,𝑖 ⋅ 𝑡𝑖)

𝑖∈ferro

 

Given this moment and a user-specified magnetic field strength threshold (B_thresh), representing the 

maximum tolerable stray field for sensitive neighboring circuits, the module computes the radius at which 

the MTJ's perpendicular stray field component attenuates to this threshold. Based on a simplified dipole 

model, the perpendicular magnetic field component (Bz) at a radial distance r in the plane of the MTJ can 

be approximated. The formula used to find the radius rm where the field drops to Bthresh is: 

𝐵𝑧(𝑟) ≈
μ0𝑀𝑡𝑜𝑡𝑎𝑙

2π𝑟3  

Setting Bz(rm) = Bthresh, we solve for the keep-out radius rm: 

𝑟𝑚 = (
μ0𝑀𝑡𝑜𝑡𝑎𝑙

2π𝐵𝑡ℎ𝑟𝑒𝑠ℎ
)

1/3

 

where: 

• rm is the calculated magnetic field zone radius before margin. 

• 𝜇0is the vacuum permeability ( 4π×10−7 T·m/A). 

• Mtotal is the total magnetic moment of the MTJ. 

• Bthresh is the user-specified magnetic field threshold. 

The final keep-out zone radius Rkeepout is then: 

𝑅𝑘𝑒𝑒𝑝𝑜𝑢𝑡 = 𝑟𝑚 + MTJ_MARGIN 

This radius, augmented by a configurable MTJ_MARGIN for additional safety, defines the magnetic keep-

out zone. This calculation is dynamic; any changes to an MTJ's layer parameters or its allocated floorplan 

area (which influences its magnetic volume if thickness is fixed) will trigger a re-computation of its keep-

out radius, which is then immediately reflected in the GUI. 

2.3. MTJ-Aware Floorplanning Engine (floorplanning.py) 

The floorplanning engine is responsible for determining the optimal placement of all blocks on the chip 

canvas, subject to a variety of constraints and objectives. It is built around the simulated annealing (SA) 

metaheuristic, a probabilistic technique well-suited for large-scale combinatorial optimization problems. 

The Block class serves as the fundamental data structure for representing individual components, storing 

their unique identifiers, dimensions, and mutable (x, y) coordinates for their top-left corner. The SA 

algorithm iteratively perturbs the current floorplan by applying one of two types of moves: randomly 
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swapping the positions of two selected blocks or applying a small random displacement ("jitter") to a single 

selected block. The magnitude of this jitter is scaled by the current annealing temperature.[5] 

An MTJ-aware cost function (make_cost_fn) guides the SA process. This function evaluates the quality of 

a given floorplan configuration and incorporates several terms. The general form of the cost function C can 

be expressed as:  

𝐶(state) = 𝐶ℎ𝑎𝑟𝑑(state) + 𝐶𝑠𝑜𝑓𝑡(state) 

1. Hard Constraints: These are conditions that must ideally be met, and their violation incurs a 

substantial PENALTY in the cost, effectively making such configurations highly undesirable. 

o Overlap Prevention: No two blocks (MTJ or standard) may overlap, considering a 

dynamically adjustable gap_target that dictates the minimum required spacing. 

o MTJ Keep-Out Enforcement: No standard logic block may intrude into the calculated 

magnetic keep-out zone of any MTJ block. MTJ blocks themselves are permitted to be 

close to each other, as their self-interference or mutual interaction is not yet modeled. 

2. Soft Objectives: These are qualities that the annealer attempts to optimize by minimizing their 

contribution to the cost. 

o Area Minimization: The total bounding box area enclosing all placed blocks is minimized 

to promote a compact layout. The bounding box area is calculated as: 

𝐴𝐵𝐵 = (max(𝑥𝑖 + 𝑤𝑖) − min(𝑥𝑖)) ⋅ (max(𝑦𝑖 + ℎ𝑖) − min(𝑦𝑖)) 

where: 

• (xi,yi) are the top-left coordinates of block i. 

• wi, hi are the width and height of block i. 

• The min/max operations are taken over all blocks in the layout. 

o Slack Reduction: The "slack," defined as the sum of squared deviations from 

the gap_target for inter-block spacing, is minimized to encourage uniform block 

distribution without excessive empty space. For any two blocks I and j, given d is their 

center to center distance, the edge-to-edge separations are: 

𝑠𝑥,𝑖𝑗 = max(0, 𝑑𝑥,𝑖𝑗 − (𝑤𝑖 + 𝑤𝑗)/2) 

𝑠𝑦,𝑖𝑗 = max(0, 𝑑𝑦,𝑖𝑗 − (ℎ𝑖 + ℎ𝑗)/2) 

The Euclidean gap gij between them is: 

𝑔𝑖𝑗 = √𝑠𝑥,𝑖𝑗
2 + 𝑠𝑦,𝑖𝑗

2  
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The extra gap beyond the target is 𝑒𝑖𝑗 = 𝑚𝑎𝑥(0, 𝑔𝑖𝑗 − 𝑔𝑎𝑝__𝑡𝑎𝑟𝑔𝑒𝑡) 

That makes the total slack: 

𝑆 = ∑ 𝑒𝑖𝑗
2

𝑖<𝑗

 

The soft component previously defined as 𝐶𝑠𝑜𝑓𝑡(state) is then: 

𝐶𝑠𝑜𝑓𝑡(state) = 𝐴𝐵𝐵 + 𝑤𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑆 

A crucial aspect of SA implementation is its handling of hard constraints. Any proposed move that results 

in a violation of the overlap or MTJ keep-out rules is rejected immediately by the core SA logic, prior to a 

full evaluation of the soft objectives in the cost function. This early rejection strategy ensures that all 

configurations accepted and explored by the annealer are, by construction, valid with respect to these critical 

constraints. The cost function itself performs a redundant check of these hard constraints as a "belt-and-

braces" measure. 

The SA process also features an adaptive gap mechanism. It begins with a relatively generous INIT_GAP to 

allow for greater freedom in block movement during the high-temperature exploration phase. As the 

temperature cools and the annealer enters a more exploitative phase (specifically, when T < 1.0), 

the gap_target within the cost function is tightened to a smaller FINAL_GAP. This staged approach 

facilitates a transition from coarse global placement to fine-grained compaction. 

To initiate the annealing, the system can employ one of two seed layout strategies: a "rectangular" grid-

based arrangement or a "wheel" layout where blocks are placed circumferentially. When the wheel layout 

is selected, an additional penalty term is incorporated into the cost function to discourage significant 

deviations from the ideal circular arrangement, thereby attempting to preserve the wheel topology during 

optimization. 

The wheel misalignment error (𝐸wheel) for a block ( 𝑘 ) at center (𝑐𝑥 , 𝑐𝑦) relative to its ideal target position 

(𝑡𝑥 , 𝑡𝑦) on the wheel (with radius (𝑅wheel) and angle (θ𝑘)) is: 

𝑡𝑥,𝑘 = 𝑋𝑐𝑒𝑛𝑡𝑒𝑟 + 𝑅𝑤ℎ𝑒𝑒𝑙 cos(θ𝑘) 

𝑡𝑦,𝑘 = 𝑌𝑐𝑒𝑛𝑡𝑒𝑟 + 𝑅𝑤ℎ𝑒𝑒𝑙 sin(θ𝑘) 

𝐸𝑤ℎ𝑒𝑒𝑙 =
1

𝑁𝑏𝑙𝑜𝑐𝑘𝑠
∑ ((𝑐𝑥,𝑘 − 𝑡𝑥,𝑘)

2
+ (𝑐𝑦,𝑘 − 𝑡𝑦,𝑘)

2
)

𝑁𝑏𝑙𝑜𝑐𝑘𝑠

𝑘=1

 

For the wheel layout, the cost function becomes: 

𝐶𝑤ℎ𝑒𝑒𝑙(state) = 𝐶ℎ𝑎𝑟𝑑(state) + 𝐴𝐵𝐵 + 𝑤𝑠𝑙𝑎𝑐𝑘 ⋅ 𝑆 + 𝑤𝑤ℎ𝑒𝑒𝑙 ⋅ 𝐸𝑤ℎ𝑒𝑒𝑙 

where wwheel is a weighting factor for the wheel penalty. 
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2.4. Obstacle-Driven Routing Engine (wiring.py) 

Once floorplanning is complete, the routing engine connects the specified pins on different blocks. The 

router is designed to be MTJ-aware, treating the keep-out zones of MTJs as obstacles. However, a crucial 

distinction is made: a wire segment connecting to a pin on an MTJ block is permitted to traverse that specific 

MTJ's own keep-out zone. It must, however, avoid the keep-out zones of all other MTJ blocks present on 

the chip. This nuanced approach balances connectivity requirements with magnetic interference mitigation. 

All keep-out zones are inflated by a small CLEARANCE value to ensure routed wires maintain a safe 

distance. So, the effective radius of an obstacle (MTJ keep-out zone) for routing purposes is defined as: 

𝑅𝑜𝑏𝑠
′ = 𝑅𝑘𝑒𝑒𝑝𝑜𝑢𝑡 + CLEARANCE 

Three distinct routing algorithms are provided: 

1. Manhattan Routing (manhattan_route): This algorithm prioritizes rectilinear paths. It first 

attempts simple L-shaped (one-bend) routes between a source and target pin. If this direct L-route 

is obstructed by an MTJ keep-out zone, the algorithm iteratively explores Z-shaped (two-bend) 

"staircase" routes by incrementally offsetting one of the segments until a clear path is found or 

search limits are exceeded. 

2. Euclidean Routing (euclidean_route): This algorithm initially attempts a direct straight-line 

connection. If this line intersects an MTJ obstacle, the router identifies the first blocking circle and 

attempts to find a "via" point by moving tangentially away from the circle's center, effectively 

creating a two-segment path around the obstacle. This tangential offset is also increased iteratively. 

3. Steiner Routing (steiner_route): 

This mode builds an approximate rectilinear Steiner tree that can connect three-or-more pins in 

one shot instead of routing them pair-by-pair. It works in two phases: 

1. Vertical trunk selection: it takes the median x-coordinate of all pins and places a 

tentative vertical “trunk” there. 

2. Branch routing: each pin is then connected to that trunk with the same obstacle-aware 

Manhattan router used elsewhere, so every branch is individually clearance-checked 

against MTJ keep-out circles and (if enabled) block rectangles. 

Once every pin has reached the trunk, the router stitches a single vertical segment between the 

highest and lowest branch attachment points, giving one continuous tree that minimizes total wire 

length while still honoring all obstacles. 

Route Around the Blocks Checkbox: 

When this option is ticked, all normal (grey) blocks, except the ones that actually own the pins 

being routed, are inserted into the obstacle list as inflated rectangles. Consequently, no segment 

from any routing mode can cross; only the surrounding whitespace is legal routing area. Untick it 

and the algorithms ignore block rectangles, considering only the red MTJ danger discs, which can 

yield shorter but block-spanning paths. 

Nets are implicitly defined by connecting pins that share the same index (different indexes are shown as 

different colors) across different blocks. For instance, pin 0 on block A will be connected to pin 0 on block 

B, and then to pin 0 on block C, forming a multi-terminal net. The routing is performed sequentially for 
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these pin-pairs. The routing process can be animated, with each segment drawn incrementally on the GUI, 

providing a visual understanding of how the algorithms navigate the obstacle field. 

2.5. E-Field (Wire Density) Visualization Module (main.py) 

A distinctive feature of this project is the post-routing E-field visualization tool, designed to offer novel 

insights into the electrical characteristics of the layout. This module is invoked by the user after the routing 

phase is complete. 

The process begins by discretizing the chip canvas area into a uniform grid. For each cell in this grid, a 

"wire density" metric is computed. This metric is defined as the sum of the geometric lengths of all 

individual wire segments whose midpoints fall within the boundaries of that particular grid cell. This 

aggregated length serves as a proxy for local routing congestion and, by extension, can be interpreted as an 

indicator of areas with potentially higher E-field intensity due to increased capacitive coupling or current 

flow. 

To enhance visual clarity and represent a more continuous field, this raw wire density map can optionally 

undergo Gaussian smoothing, provided the SciPy library is available in the user's Python environment. The 

smoothed (or raw) density data is then rendered as a 3D surface plot using Matplotlib's 3D capabilities. In 

this plot, the X and Y axes correspond to the chip's floorplan coordinates, while the Z-axis represents the 

calculated wire density, color-coded to indicate varying intensities (e.g., hotter colors for higher density). 

To contextualize this "E-field" landscape, the locations of MTJ blocks are explicitly represented within the 

3D visualization. Each MTJ block is depicted as a semi-transparent cylindrical column, rising from the base 

of the plot (Z=min_density) to its top (Z=max_density) at the MTJ's (X,Y) floorplan coordinates. This 

overlay allows designers to visually inspect the proximity of MTJs to regions of high wire density, which 

could be critical for assessing potential EMI coupling or understanding the impact of MTJ placement on 

overall routing patterns and electrical stress. The 3D plot is fully interactive, allowing rotation and zooming 

for detailed examination. 

2.6. Current Development Status and Iterative Refinements 

As of this report, the integrated system has achieved a high degree of functionality. All core modules, GUI, 

MTJ modeling, floorplanning, routing, and E-field visualization, are implemented and operational. Users 

can successfully define chip layouts with standard and MTJ blocks, specify detailed MTJ parameters, 

execute the simulated annealing floorplanner (for both rectangular and wheel initializations), perform MTJ-

aware routing, and subsequently generate the 3D wire density visualization. 

The development process has been iterative, with significant effort dedicated to ensuring the robustness and 

correctness of the interactions between modules. For instance, the initialization sequence of attributes 

within the main FloorplanApp class was carefully refined to prevent errors arising from methods being 

called before their required data structures (e.g., pin_specs, mtj_radii, Matplotlib axes ax) were properly 

instantiated. The simulated annealing algorithm, particularly its cost function and the handling of hard 

constraints, underwent several revisions to ensure consistent behavior, especially during the adaptive gap 

tightening phase and when dealing with the compound cost function used for the wheel layout (which 

includes an additional penalty for deviation from the wheel topology). The E-field visualization module 

was a later addition, built upon the completed routing infrastructure. 
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3. Project Novelty and Alignment with Academic Context 

This project distinguishes itself through several innovative aspects and aligns commendably with the 

objectives outlined in the CE357 course project guidelines, aiming to extend classroom learning towards 

practical application and early research exploration. 

3.1. Intrinsic Magnetic-Field Awareness in Physical Design 

The primary innovation of this work lies in its proactive and integrated approach to managing magnetic 

interference in VLSI physical design. Traditional CAD flows often defer the consideration of such multi-

physics effects, treating them as late-stage verification concerns. This project, conversely, elevates magnetic 

integrity to a foundational requirement. This is achieved through two principal mechanisms: 

1. Physics-Informed Constraint Generation: The system does not rely on arbitrary or overly 

conservative fixed margins for magnetic components. Instead, it dynamically calculates magnetic 

keep-out zones based on the physical layer stack parameters of each MTJ device and a defined 

stray field threshold. This allows for more tailored and potentially less pessimistic exclusion 

regions.[2] 

2. Native Integration into Optimization and Routing: These calculated keep-out zones are not only 

visual aids; they are incorporated as hard constraints within the cost function of the simulated 

annealing floorplanner. Consequently, the placement engine actively seeks solutions that inherently 

respect these magnetic boundaries. Similarly, the routing algorithms are designed to treat these 

zones as inviolable obstacles (with the exception of nets terminating on the MTJ itself), ensuring 

that interconnect paths are magnetically compliant by construction. 

This holistic integration of magnetic awareness from the outset represents a significant departure 

from conventional practices and addresses a growing concern in the design of SoCs featuring 

MRAM, RF, or other magnetically active elements. 

3.2. Three-Dimensional E-Field (Wire Density) Visualization 

The second contribution is the development of the 3D E-field visualization tool. While the concept of wire 

density is established in VLSI CAD as an indicator of routing congestion, its representation as a continuous 

3D surface, analogous to an "E-field intensity map," offers a uniquely intuitive and powerful analytical 

perspective. This visualization provides: 

• Enhanced Congestion Analysis: It moves beyond simple 2D heatmaps of congestion by providing 

a volumetric sense of wire density, where peaks clearly indicate critical hotspots. 

• Correlation with Component Placement: Superimposing the MTJ block locations as cylindrical 

columns within this 3D E-field landscape allows designers to immediately assess the relationship 

between the placement of these specialized components and the surrounding wiring density. This 

could reveal, for instance, if MTJs are inadvertently placed in or contributing to regions of extreme 

routing pressure, or if dense signal routing is occurring undesirably close to sensitive MTJs.[4] 

• Proxy for Electrical Stress and EMI: High wire density can imply increased capacitive coupling 

between adjacent wires, greater dynamic power consumption in highly active regions, and a higher 

potential for electromagnetic interference. The E-field map serves as a visual proxy for these 
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electrical stress factors, guiding designers towards potential areas of concern for signal integrity or 

power integrity.  

3.3. Alignment with Suggested Project Categories (from Assignment Guidelines) 

The developed system resonates with several of the project categories suggested in the course guidelines, 

demonstrating its relevance to contemporary research challenges in VLSI CAD:[1] 

• Category 2: "New floorplanning approach": The project introduces a specialized floorplanning 

methodology that is fundamentally MTJ-aware. The core SA algorithm is adapted with a cost 

function and constraint handling mechanisms specifically designed to manage magnetic keep-out 

requirements. The philosophy, as outlined in the initial proposal, of prioritizing "interconnection" 

(in this case, magnetic non-interference) alongside area packing aligns with the spirit of developing 

novel placement strategies. 

• Category 4: "Routability-driven placement": Although the current implementation does not 

employ a closed-loop system where routability metrics directly influence placement 

decisions during the annealing process, the E-field (wire density) map serves as a powerful post-

hoc analysis tool for routability and congestion. The visual feedback provided by this map 

highlights regions where routing resources are heavily utilized or where congestion is problematic. 

This forms a critical first step towards a truly routability-driven placement system, as the insights 

gained could be used to formulate new cost terms or constraints for subsequent optimization runs. 

Furthermore, the inherent MTJ-awareness in both floorplanning and routing contributes to overall 

routability by ensuring paths are not blocked by unforeseen magnetic constraints. 

• Category 8: "Combining floorplanning with placement techniques...": While the project does 

not tackle the mixed-mode placement problem in the traditional sense of handling standard cells 

alongside large macros, it does manage two distinct classes of components: standard logic blocks 

(represented as rectangles) and MTJ blocks (represented as circles with unique physical properties 

and associated field constraints). The floorplanning engine (SA) is tasked with optimally arranging 

these heterogeneous elements, considering their specific geometric and non-geometric (magnetic) 

interactions. This requires a combination of techniques typically found in both macro-cell 

floorplanning (managing large, potentially irregularly shaped keep-out zones) and detailed 

placement (achieving a compact arrangement). 

4. Implementation Details, Challenges Encountered, and Solutions 

From concept to a functional prototype involved overcoming several technical challenges and making key 

implementation decisions: 

• Simulated Annealing Parameterization and Constraint Management: A significant portion of 

the development effort was dedicated to the robust implementation of the simulated annealing 

algorithm. The choice of an appropriate cooling schedule (initial temperature, final temperature, 

cooling rate α), the number of moves attempted at each temperature, and the design of the move 

set (block swaps and jitters) required iterative tuning. A primary challenge was the strict 

enforcement of hard constraints (no block overlaps, no MTJ keep-out violations). The adopted 

solution involves an "early rejection" mechanism within the SA core: any proposed move that 
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violates these fundamental rules is immediately undone and discarded before a full cost function 

evaluation. This significantly improves efficiency by avoiding costly evaluations of invalid states 

and ensures that the annealer only explores the valid region of the solution space. The cost function 

itself also includes checks for these hard constraints, providing a redundant safety layer. The 

adaptive gap tightening mechanism, transitioning from INIT_GAP to FINAL_GAP, required 

careful handling of the cost function re-parameterization, particularly for the wheel layout where 

the cost function includes an additional term for topological adherence. Ensuring that this 

compound cost function was correctly reconstructed and that its constituent parts (base cost and 

wheel penalty) were appropriately managed during the gap transition was a non-trivial debugging 

exercise. 

• Geometric Primitives and Collision Detection: The system relies heavily on accurate and 

computationally efficient geometric operations. Functions for calculating block bounding boxes, 

detecting overlaps between rectangles (considering a specified gap), and detecting overlaps 

between rectangles and circles (for MTJ keep-out zones) form the bedrock of the constraint 

checking system. These were implemented with careful attention to edge cases and computational 

cost. 

• MTJ-Aware Routing Logic: The development of the Manhattan, Euclidean, and Steiner-Tree 

routing algorithms necessitated careful logic to correctly interpret MTJ keep-out zones as obstacles. 

The critical nuance was allowing a net segment to enter the keep-out zone of an MTJ if that MTJ 

was the source or destination of that specific segment, while simultaneously prohibiting entry into 

the zones of all other MTJs. This required dynamically tailoring the list of active obstacles for each 

segment being routed. The iterative nature of the obstacle avoidance in both routers (e.g., expanding 

L-bends to Z-bends in Manhattan, or increasing tangential offsets in Euclidean) also required 

careful management of search limits to prevent excessive runtimes for complex scenarios. 

• Graphical User Interface Responsiveness and Visualization Fidelity: Creating a responsive 

GUI with real-time updates during potentially long-running processes like animated SA or routing 

presented challenges. Effective use of Tkinter's event loop and Matplotlib's canvas drawing 

mechanisms (master.update() versus master.update_idletasks(), canvas.draw_idle()) was essential 

to prevent the interface from freezing while still providing timely visual feedback. For the 3D E-

field map, achieving a clear, understandable, and aesthetically pleasing visualization involved 

experimentation with Matplotlib's 3D surface plotting parameters, colormaps, lighting, 

transparency (for MTJ columns), and viewing angles. 

5. Preliminary Results and System Demonstration 

The implemented system provides compelling visual and functional demonstrations of its capabilities. 

Upon launch, the user is presented with an initial random (but valid, non-overlapping) placement of blocks, 

with MTJ components and their calculated keep-out zones clearly distinguished. 

• Interactive Design and Parameterization: Figures 1 and 2 demonstrate the ease with which users 

can add, resize, or delete blocks, modify pin configurations, and input detailed layer parameters for 

MTJ devices through dedicated dialogs. The dynamic update of MTJ keep-out radii in response to 

parameter changes are shown in Figure 3. 
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Figure 1: Initial Menu with Random Blocks Created as an Example 

 

  

 

 

 

 

 

 

Figure 2: Blocks and MTJ Layers Menu, respectively 
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• Simulated Annealing in Action: A sequence of screenshots in Figure 3 showcases the simulated 

annealing process. Starting from a chosen seed layout (e.g., rectangular or wheel), the pictures 

depict blocks gradually moving, exploring different configurations, and eventually converging 

towards a more compact and optimized floorplan that respects all geometric and magnetic 

constraints. The visual difference between the initial and final annealed states are emphasized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Initial, Middle, and Final Steps of Rectangular Simulated Annealing Process with Predefined 

Characteristics to Create Visible Stray Fields around MTJs 
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• MTJ-Aware Routing: Figure 4 illustrates the outcome of the routing phase for Manhattan routing 

algorithm. This image shows nets connecting pins across different blocks, with a focus on how the 

routes navigate around the keep-out zones of uninvolved MTJs while being permitted to enter the 

zone of a connected MTJ. Different colors for different nets enhance clarity. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: A View from a Layout after Manhattan Style Routing Algorithm is Conducted  
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Figure 5: A View from a Layout after Steiner Tree Style Routing Algorithm is Conducted (without 

floorplanning (SA) beforehand)  

 

 

Figure 6: Bottom Left of Figure 5 

Figure 5 illustrates the Steiner Tree style routing with the interface indicating the length of each routing 

segment below – shown in detail in Figure 6.    
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• 3D E-Field (Wire Density) Visualization: Figure 7 shows the interactive 3D plot that displays the 

wire density surface, with color gradients indicating regions of low and high density. The semi-

transparent cylindrical columns represent MTJ locations on the actual layout, allowing for an 

immediate visual correlation between MTJ placement and local wiring patterns. Different viewing 

angles of this 3D map is shown from 2 different angles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: E-field Density Map Using the Routing given in Figure 4 
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The performance of the simulated annealer has been observed to be sensitive to initial parameters such 

as INIT_GAP and the spacing/margin values used in the seed layouts. More generous initial spacing 

generally allows the annealer to find valid, low-penalty starting points more easily, leading to more effective 

exploration of the solution space. The E-field map has proven effective in qualitatively identifying areas 

that become heavily congested after routing, particularly when layouts are very compact or when MTJ 

keep-out zones force detours for many nets. 

6. A Cumulative Example 

Below, in Figure 8, 9, and 10 a cumulative example on how the system and its main functions work has 

been shown. We see a random initialization of the system in Figure 8. In Figure 9, we see what happens 

when wheel floorplanner is running. In Figure 10, we observe what happens when Figure 9’s E-Field 

density map is calculated. 

  

 

 

 

 

 

 

 

 

 

 

Figure 8: Initial State of the System 
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Figure 9: After Wheel Annealer Floorplanning and Manhattan Style Routing 
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Figure 10: E-Field Density Map of Figure 9 
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Another example is shown below in Figures 11 and 12, demonstrating what happens when “Route Around 

Blocks” box is checked. The example is shown on a random distribution of blocks after no floorplanning 

has been conducted. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: When the “Route Around Blocks” Box is Checked 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: When the “Route Around Blocks” Box is not Checked 
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7. Future Research Directions  

The current framework, while functional and innovative, serves as a robust platform for numerous exciting 

future research and development avenues that could further enhance its practical utility and academic 

contribution: 

1. Closed-Loop Routability-Driven Floorplanning: A significant extension would be to transform 

the E-field (wire density) map from a post-hoc analytical tool into an active component of the 

optimization loop. The calculated wire density, or a derivative metric representing congestion, 

could be incorporated as an additional penalty term in the simulated annealing cost function. This 

would enable the floorplanner to proactively seek placements that not only minimize area and 

respect magnetic constraints but also promote more uniform wire distribution and alleviate 

potential routing hotspots, thereby directly improving global routability. 

2. Integrated Thermal Awareness: Given that high wire density often correlates with increased 

current density and localized power dissipation, the E-field map could serve as a first-order proxy 

for a thermal map of the chip. Future work could involve developing more sophisticated electro-

thermal models and integrating thermal constraints or objectives (e.g., minimizing peak 

temperature, ensuring thermal uniformity) into the SA cost function. This would be particularly 

relevant for 3D ICs or designs with high power density. 

3. Advanced Magnetic and RF Component Modeling: The current MTJ model employs a 

simplified radial keep-out zone based on a dipole approximation. For more complex magnetic 

components, such as spiral inductors in RF circuits or MTJs with non-uniform field patterns, more 

sophisticated field modeling techniques (e.g., using analytical expressions for specific geometries, 

or even linking to finite element method (FEM) field solvers for high accuracy) could be integrated. 

This would allow for more precise and potentially less conservative keep-out region definitions. 

4. Timing-Driven Physical Design: The framework could be extended to incorporate timing 

awareness by estimating net delays (based on wire length and potentially buffer models) and 

including critical path delay or timing slack objectives within the SA cost function. This would 

involve integrating a static timing analyzer (STA) or a proxy for timing estimation. 

5. Systematic Benchmarking and Comparative Analysis: To rigorously evaluate the efficacy of the 

MTJ-aware approach and the utility of the E-field visualization, the tool should be applied to a suite 

of standard academic or industry-derived benchmarks. These benchmarks might need to be 

augmented with representative MTJ or RF components. Key metrics for comparison against 

traditional (non-MTJ-aware) floorplanners or other specialized tools would include final layout 

area, total wire length, routing completion rates, computational runtime, and, uniquely, quantitative 

measures of magnetic integrity and wire density uniformity. 

6. Exploration of Alternative Optimization Algorithms: While simulated annealing is a versatile 

heuristic, exploring other optimization techniques such as genetic algorithms, particle swarm 

optimization, or even machine learning-based approaches (inspired by projects like 

AlphaChip/AlphaDev) for the MTJ-aware floorplanning problem could yield interesting 

comparative results or performance improvements. 
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7. Integration with Industry-Standard EDA Flows (e.g., OpenROAD): A long-term goal could be 

to explore methods for integrating the core concepts of MTJ-aware constraint management or the 

E-field/wire density analysis capabilities into open-source EDA platforms like OpenROAD. This 

would allow for validation and application of the techniques developed within a more 

comprehensive physical design environment and on larger, more complex designs. 

8. Conclusion 

This project has culminated in the successful development and demonstration of a VLSI physical design 

tool that uniquely integrates magnetic-field awareness into its core floorplanning and routing algorithms, 

complemented by an innovative 3D E-field (wire density) visualization capability. The system effectively 

employs simulated annealing to optimize block placements while enforcing both standard geometric 

constraints and physics-derived magnetic keep-out zones for MTJ components. The implemented routing 

algorithms demonstrate an ability to navigate these complex obstacle fields, ensuring connectivity while 

preserving magnetic integrity. The E-field visualization module offers designers a novel and intuitive means 

to analyze post-routing wire density, identify potential congestion or EMI hotspots, and understand the 

interplay between component placement and routing resource utilization. 

The work undertaken directly addresses the challenges posed by the increasing integration of magnetically 

active components in modern SoCs. The project has involved substantial problem-solving across algorithm 

design, software engineering, and data visualization. The resulting framework serves as a functional 

prototype and establishes a versatile platform for future research into advanced topics such as closed-loop 

routability-driven design, integrated thermal management, and the physical design of next-generation 

heterogeneous SoCs. 

9. Code Repository 

The complete source code for this project is maintained and accessible via the following public GitHub 

repository:                                                       

https://github.com/CanAfacan/Magnetic-Field-Aware-Floor-Planning-and-Obstacle-Driven-Routing-for-

MRAM-MTJ- 
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