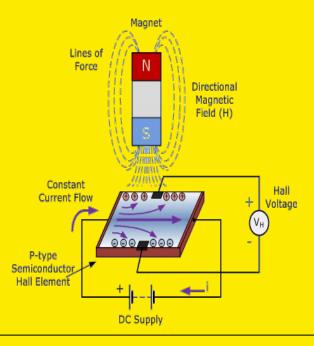
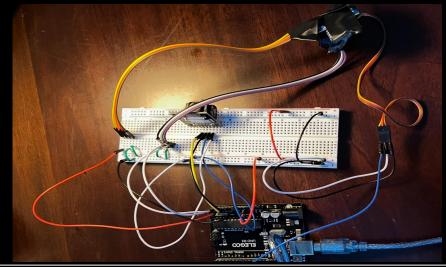
1/16/2025

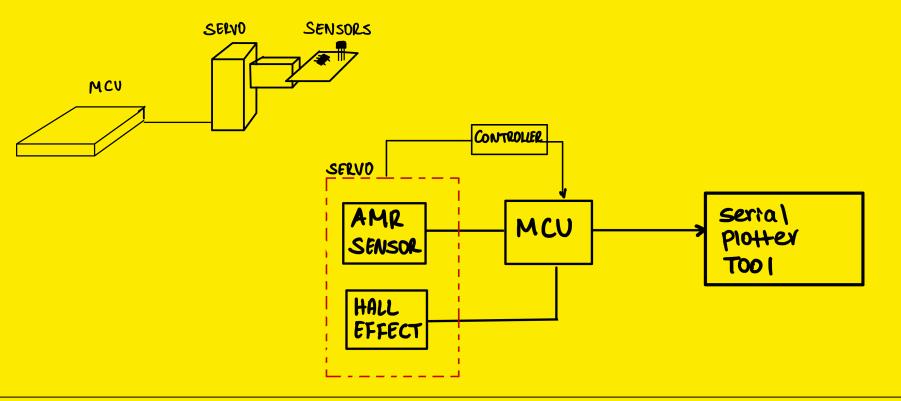

MINISENSO Chalende

Bemnet Tefera and Can Afacan

Magnetic Motion Tracker


Objective

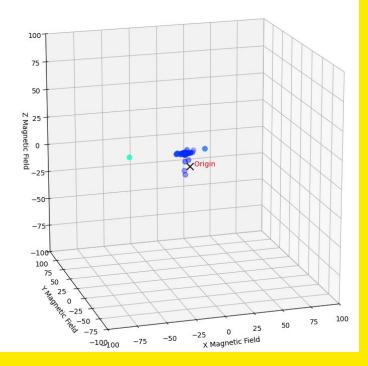
- Explore the behavior of magnetic sensors (both Hall effect and AMR digital compass)
- Measure and interpret magnetic field strength and direction
- Give the user the ability to position sensors as they see fit



Design Components & Purpose

Arduino Uno: Sensor Communication and Programming Hall Effect Sensor: Check for the presence of a magnetic material using the Hall Voltage AMR Sensor: Track real time magnet position and field magnitude Controller and Servo: Position adjustment of the magnets

Design Flow


Testing and Output

Controller_X: 515,	Controller_Y: 520,	Voltage:	0.000,	XMag: -18.04,	YMag:	4.37,	ZMag:	34.23
Controller_X: 515,	Controller_Y: 520,	Voltage:	0.034,	XMag: -18.21,	YMag:	4.37,	ZMag:	34.27
Controller_X: 515,	Controller_Y: 520,	Voltage:	0.010,	XMag: -18.21,	YMag:	4.48,	ZMag:	34.23
Controller_X: 515,	Controller_Y: 520,	Voltage:	0.015,	XMag: -18.16,	YMag:	4.43,	ZMag:	34.32
Controller_X: 515,	Controller_Y: 520,	Voltage:	0.010,	XMag: -18.11,	YMag:	4.36,	ZMag:	34.30
Controller_X: 515,	Controller_Y: 520,	Voltage:	0.000,	XMag: -18.09,	YMag:	4.34,	ZMag:	34.23
Controller_X: 515,	Controller_Y: 520,	Voltage:	0.005,	XMag: -18.11,	YMag:	4.37,	ZMag:	34.18
Controller_X: 511,	Controller_Y: 516,	Voltage:	0.000,	XMag: -20.20,	YMag:	3.79,	ZMag:	30.10
Controller_X: 514,	Controller_Y: 519,	Voltage:	5.000,	No magnetic field detected				
Controller_X: 514,	Controller_Y: 519,	Voltage:	4.990,	No magnetic f:	ield de	etected	i	
Controller_X: 514,	Controller_Y: 519,	Voltage:	4.990,	No magnetic f:	ield de	etected	i	
Controller_X: 514,	Controller_Y: 519,	Voltage:	4.990,	No magnetic f:	ield de	etected	i	
Controller_X: 514,	Controller_Y: 519,	Voltage:	4.985,	No magnetic f:	ield de	etected	i	
Controller X: 514,	Controller Y: 519,	Voltage:	5.000,	No magnetic f	ield de	etected	1	

Live sensor reading in the presence and absence of magnetic field.

Real-Time 3D Magnetic Field Visualization

Hall: Inactive Magnetic Field Strength: 24.40

Live recording of magent position.

Further Improvement

AMR Sensor

<u>Problem</u>; Currently has a hard time going back to initial value in the absence of magnetic field <u>Solution</u>: Write a calibration algorithm that takes into account initial discrepancies

Hall Effect Sensor

<u>Problem</u>: Hall Effect Sensor jumps between two extreme voltage values (0.12V and 5v) in the presence of a relatively strong magnet. Solution: Use two hall effect sensors positioned opposite from each other and add a differential amplifier to decrease

sensitivity

